Nonlocal Symmetries of Systems of Evolution Equations
نویسنده
چکیده
We prove that any potential symmetry of a system of evolution equations reduces to a Lie symmetry through a nonlocal transformation of variables. Based on this fact is our method of group classification of potential symmetries of systems of evolution equations having non-trivial Lie symmetry. Next, we modify the above method to generate more general nonlocal symmetries, which yields a purely algebraic approach to classifying nonlocal symmetries of evolution type systems. Several examples are considered.
منابع مشابه
On recursion operators and nonlocal symmetries of evolution equations
We consider the recursion operators with nonlocal terms of special form for evolution systems in (1+1) dimensions, and extend them to well-defined operators on the space of nonlocal symmetries associated with the so-called universal Abelian coverings over these systems. The extended recursion operators are shown to leave this space invariant. These results apply, in particular, to the recursion...
متن کاملTime dependence and (non)commutativity of symmetries of evolution equations
We present easily verifiable sufficient conditions of time-independence and commutativity for local and nonlocal symmetries for a large class of homogeneous (1+1)-dimensional evolution systems. In contrast with the majority of known results, the verification of our conditions does not require the existence of master symmetry or hereditary recursion operator for the system in question. We also g...
متن کاملSymbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws of Partial Differential Equations Using the GeM Package for Maple
The use of the symbolic software package GeM for Maple is illustrated with examples of computation of nonlocal symmetries and nonlocal conservation laws of nonlinear partial differential equations. In the considered examples, the nonlocal symmetries and conservation laws arise as local symmetries and conservation laws of potential systems. FullMaple codewith detailed comments is presented. Exam...
متن کاملIntegrable Systems and their Recursion Operators
In this paper we discuss the structure of recursion operators. We show that recursion operators of evolution equations have a nonlocal part that is determined by symmetries and cosymmetries. This enables us to compute recursion operators more systematically. Under certain conditions (which hold for all examples known to us) Nijenhuis operators are well defined, i.e., they give rise to hierarchi...
متن کاملFramework for nonlocally related PDE systems and nonlocal symmetries: extension, simplification, and examples
Any PDE system can be effectively analyzed through consideration of its tree of nonlocally related systems. If a given PDE system has n local conservation laws, then each conservation law yields potential equations and a corresponding nonlocally related potential system. Moreover, from these n conservation laws, one can directly construct 2 − 1 independent nonlocally related systems by consider...
متن کامل